
	
		The Lazy Programmer

		
			

			March 2, 2010

			
				Berkeley DB Viewer

				Filed under: Database, Programming — ferruccio @ 11:27 am
Tags: berkeley-db, Database, viewer

				
					
						I’m currently working on a project which uses Berkeley DB (BDB) as it’s data
							storage engine. I can’t say enough good things about BDB. It has proven to be a very
							fast and flexible way to store and retrieve data, it is very easy to use and the
							documentation is absolutely top notch.

						One issue I ran into, though, is that there is no good way to examine the databases for
							debugging purposes. Initially, I used the provided db_dump command-line tool, which was fine
							for small databases. Db_dump dumps the entire contents of a database, which was OK when I
							was dealing with databases with only a few records. But now I am working with databases with
							thousands and soon millions of records. Db_dump just won’t do.

						I did a bit of googling but there didn’t seem to be any viewers available for Berkeley
							DB, so I decided to write one. I was going to do it in C# and WPF because that’s what
							I’m currently using. But I decided that, since BDB is cross-platform, a viewer for it
							should also be cross-platform. So I decided to use Qt to build the viewer.

						After a couple of nights of coding, here is the result:

						[image: bdbvu]

						The interface is pretty simple. There is a button for opening a BDB database file. Once a
							database is opened, the “Database” combo-box let’s you pick which
							sub-database to view (in BDB terms a database is a key/value table and a single file can
							contain multiple “databases”). The list view on the left shows all the keys in
							that database and the view on the right shows the contents at that key. Both keys and values
							are formatted the same as db_dump -p -k formats them.

						I put the source code for Berkeley DB Viewer (bdbvu) on Google Code. You can grab it at: http://code.google.com/p/bdbvu/.

						To build it you need two things:

							 Berkeley
									DB, installed and built with C++ support.
	 Qt4.

						Once you have those set up and you’ve downloaded the code, you will probably need to
							change the Qt project file to reflect your environment. I may enventually provide binary
							downloads, but I don’t have the time for that right now.

						Finally, a few things to keep in mind:

							I’ve only tested this with DB_RECNO and DB_BTREE databases, since that’s
								what I’m using at this time. But, there’s no reason it shouldn’t work
								with DB_HASH and DB_QUEUE databases as well. (Where have I heard that before?)
	I’ve only tested it with databases with embedded databases, not with stand-alone
								databases. I know it won’t work with stand-alone databases because the code for
								that is a no-op.
	I’ve only built and run this on OS X. Theoretically, it should work on Windows and
								Linux as well, but you never know until you try it.
	When you open a database, it will load all it’s keys into memory. This seems to be
								pretty quick (a couple of seconds for a 3000+ record database on my laptop) but I may
								have to change it to use a more scalable method in the future.

						That’s it for now. I hope you find this useful.

					

				

				
					Leave a Comment
				

			

			For now check out this interesting project: DecentWorld NFTs

			
			

			

			August 9, 2009

			
				Dynamic C++ Update

				Filed under: C#, Dynamic-Typing — ferruccio
					@ 2:51 pm
Tags: C#, Dynamic-Typing

				
					
						I’ve been tinkering with my Dynamic C++ project on occasion in order to get it to build
							successfully under OSX without much luck. Most of it built just fine, but there were a bunch
							of places where the boost::variant::apply_visitor() function was giving me all sorts of
							grief.

							The original problem was that I was passing an instance of a locally defined struct as the
							functor argument to apply_visitor(), such as:

						
							
unsigned int var::count() const {
	struct count_visitor : public boost::static_visitor<unsigned int>
		unsigned int operator () (null_t) const { throw exception("invalid ...
		unsigned int operator () (int_t) const { throw exception("invalid ...
		unsigned int operator () (double_t) const { throw exception("inval ...
		unsigned int operator () (string_t s) const { return s.ps->leng ...
		unsigned int operator () (list_ptr l) const { return l->size(); }
		unsigned int operator () (array_ptr a) const { return a->size(); }
		unsigned int operator () (set_ptr s) const { return s->size(); }
		unsigned int operator () (dict_ptr d) const { return d->size(); }
	};

	return boost::apply_visitor(count_visitor(), _var);
}
							

						

						 (more…)

					

				

				
					Comments Off
				

			

			June 15, 2009

			
				Dynamic C++

				Filed under: C#, Dynamic-Typing, Programming — ferruccio @ 10:01 pm
Tags: c++ programming
						dynamic-typing

				
					
						A while back, I started building a PDF parser in C++. I had been using the Adobe PDF IFilter
							to extract text from PDF files in order to index the content, but I wanted to be able to be
							able to also extract formatting information so I dug into the PDF format. The PDF format
							itself is fairly easy to parse, but the contents can be quite complex.

						The PDF format consists of a series of objects, expressed in a simple syntax based on
							PostScript. There are primitives such as strings and numbers, and there are collections
							(arrays and dictionaries) which can contain both primitives and containers. You can see how
							things quickly become complicated when you have dictionaries containing arrays containing
							other complex objects.

						 (more…)

					

				

				
					Comments (9)
				

			

			May 28, 2009

			
				<XAML fest>

				Filed under: /NET — ferruccio @ 7:01 am
Tags: .net xaml silverlight
						blend

				
					
						I just finished XAML fest, a two day introduction to SilverLight, XAML and Expression Blend.
							The event was held at Microsoft’s New England R&D Center in Cambridge, Massachusetts.
							The class centered around building a small web app using SilverLight. A lot of time was
							spent learning how to use Blend to build user interfaces.

						Having spent a good portion of my career building Windows apps, I’ve had the
							opportunity to create UIs using the Win32 API, OWL, MFC, WTL and wxWidgets. I’ve
							dabbled in WPF but never did much with it since I’ve been spending most of my free
							time tinkering with Cocoa and Cocoa-Touch. What I really like about using XAML is that you
							can lay out an entire interface, including a lot of behavior without writing a single line
							of code.

						 (more…)

					

				

				
					Comments Off
				

			

			April 5, 2009

			
				A Python snippet for reading binary data

				Filed under: Programming, Python — ferruccio @ 7:31 pm
Tags: Programming, Python

				
					
						I’ve been experimenting using Python to read data from binary files and started to notice the
							following pattern in my code.

							Read a block of binary data.
	Use struct.unpack() to break out individual fields.
	Create a dictionary from those fields using the appropriate key names.

						 (more…)

					

				

				
					Comments (1)
				

			

			January 5, 2009

			
				Returning multiple values from a function in C++

				Filed under: C#, Programming — ferruccio @
					10:22 pm
Tags: Boost, cplusplus, Programming

				
					
						Ideally all functions should return just one value. There are many times, however, when
							returning more than one value makes a function so much more convenient. The classic example
							of this convenience is file input. When we read data from a file we want to know two things:
							Did we reach the end of the file? and if not, what is the next piece of data from the file.
						

						Sometimes, we can encode multiple return values into one. For many of us, the first C idiom
							we learned from K&R is processing input a character at a time:

						
							int ch;
while ((ch = getchar()) != EOF) {
 // do character processing...
}

						

						This works because the EOF macro was set to something outside the range of valid characters
							(usually -1). While this approach can work fairly well for simple cases, it quickly breaks
							down as the types we wish to return get more complex.

						 (more…)

					

				

				
					Comments (4)
				

			

			November 18, 2008

			
				Functional C++

				Filed under: C#, Programming — ferruccio @
					9:56 pm
Tags: cplusplus, functional, Programming

				
					
						It’s been awhile since my last post. It was near the end of a product shipping cycle
							and, well, you know how that goes. Then I got a bit addicted to stackoverflow and spent way too much
							time each night reading and answering questions. Eventually, I started a couple of
							side-projects which may eventually yield something interesting to write about.

						Anyway, a little over a month ago, I answered a question on Stack Overflow titled “What
							is the one programming skill you always wanted to master but haven’t had time?”
							I didn’t have to think much to come up with an answer to that: Functional Programming.
						

						I understand some of the fundamental concepts behind functional programming and occasionally
							I dabble a bit with LISP or I read a bit more of SICP
							but the practical applications of FP have been elusive to me.

						 (more…)

					

				

				
					Comments (2)
				

			

			August 10, 2008

			
				Adding a lock() statement to C++

				Filed under: C#, Multi-threading, Programming — ferruccio @ 9:43 am
Tags: C#, Multi-threading, Programming

				
					
						One of the things I like about C# that I miss in C++ is the lock() statement. It provides a
							simple way to control access to an object across multiple threads.

						When I first started writing Windows apps, I used the Windows critical section API directly.
							After getting tired of EnterCriticalSection/LeaveCriticalSection, (I suspect like everybody
							else) I created a CriticalSection class that was a simple wrapper around the raw API.

						Eventually, I got around to using mutexes from the Boost Thread class. You can create a scope
							guard whose destructor releases its referenced object, but it still lacks the simple
							elegance and clarity of being able to say:

						
							lock (some-object) {
 do something to some-object
}

						

						 (more…)

					

				

				
					Comments (8)
				

			

			August 3, 2008

			
				Formatting Output with Boost

				Filed under: C#, Programming — ferruccio @
					9:20 pm
Tags: Boost, C#, Format

				
					
						Sometimes a GUI is overkill for a project. You just need a simple tool to do some task.
							Perhaps it needs to be scripted. So you whip up a console mode program and you eventually
							have to output something. At this point, many developers will simply ignore the C++
							iostreams library and reach for good old printf(). I can certainly understand why. The
							iostreams objects are easy enough to use for simple formatting tasks. However, when you need
							to do something more sophisticated, you will often find yourself digging through reference
							material, muttering "this should be easy…"

						 (more…)

					

				

				
					Comments (2)
				

			

			Next Page »
			
		

	

